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On the quantum theory of dispersion at resonance 
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Tata Institute of Fundamental Research, Bombay 5 ,  India 

MS received 2 December 1970, in final revised form 23 September 1971 

Abstract. The perturbation exuansions of the wavefunction, under the action of external 
monochromatic radiation are obtained, which have no secular or divergent terms, in 
presence of resonance (without any damping factor). Next, the expectation values of the 
electric dipole moment operator with respect to these characteristic states are calculated. 
Finally, the dispersion formulae are obtained in the neighbourhood of resonance, they are 
free from any divergences. The dispersion curves obtained from them have all the basic 
features of the usual dispersion curves in the neighbourhood of resonance. 

1. Introduction 

The object of this short paper is to derive expressions for the dispersion in the 
neighbourhood of resonance from the quantum theory. In the case of resonance, 
that is, when E j  - E ,  = hw, where E j  are the energies of the unperturbed stationary 
states, if one proceeds to solve the Schrodinger equation in the usual manner, one faces 
serious difficulty due to the vanishing of the denominators in the perturbation expansion. 
The conventional way of avoiding this difficulty is to introduce ad hoc complex energies, 
which is equivalent to introducing nonsteady (decaying) states (Weisskopf 1933 ; 
Heitler 1954). Alternatively, one can introduce a decaying factor in the amplitude of 
the incident radiation field (Weisskopf and Wigner 1930). 

In this paper it is shown that, in the case of monochromatic incident radiation, 
such an artificial factor, which decreases exponentially with time, is redundant in 
obtaining the dispersion formulae which are meaningful in the neighbourhood of 
resonance. The case of monochromatic incident radiation is a special case of the time 
dependent perturbation. The solution of the Schrodinger equation without any secular 
or divergent term, in the general case, has been obtained by the author (Sen Gupta 1970). 
Following exactly the same method we first obtain a perturbation expansion which 
has neither any secular term nor any term with a vanishing denominator. 

It may not be irrelevant to mention that some recent investigations on the stability 
of linear oscillatory systems with periodic perturbation or of general canonical systems 
of differential equations with periodic coefficients, have shown that the two cases of 
resonance namely: (i) 0 j - q  = qlw and (ii) oj+wk = q2w, where w j  the unperturbed 
circular frequencies and w the fundamental frequency of the periodic perturbation 
(4 are integers), are quite different. It is known (Gelfand and Lidskii 1955) that in the 
former case the system is still oscillatory while in the latter case the system is unstable. 
In quantum mechanics, the latter cannot appear since the Schrodinger equation is 
linear and the Hamiltonian is hermitian, the solutions should still be oscillatory with 
time. This point was noted by Schrodinger (1929) in his early papers on the time 
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dependent perturbation theory. It is very important for our problem. It asserts clearly 
that the ad hoc introduction of a decaying factor is redundant, and external damping 
is not needed as there are no divergences. This has been explicitly manifested by the 
solutions we have obtained in the case of resonance. 

The problem of two resonating levels in the field of a monochromatic beam has been 
solved to a good degree of accuracy by Fleck (1966) (neglecting the nonresonating 
terms). Feynman et al(1957) have also developed a method of treating the same problem. 
Schwinger (1937) solved the problem of a multiresonating system of nuclear magnetic 
moments in the special case of a rotating magnetic field. Instead of starting with an 
approximate unperturbed solution of the wave equation with a two level resonating 
system (neglecting first and higher harmonic terms) and then obtaining the effect of the 
other levels as a perturbation, we have calculated directly the average electric polariza- 
tion induced by the radiation field, with the help of the solution of the wave equation 
as obtained in the text. Wallace (1970) has investigated the solution of the time dependent 
Schrodinger equation by replacing it with suitable difference equations which introduces 
serious limitations to the problem. 

Recently, Loudon (1970) has made detailed investigations of the properties of the 
refractive index and the propagation of electromagnetic waves at resonance (with 
damping) from the stand-point of classical theory. Since the classical equation of 
motion is inhomogeneous (though linear), one is obliged to introduce a damping term 
without which the solutions become aperiodic and unbounded with time at resonance. 
On the other hand, the Schrodinger equation is linear and homogeneous and it has 
solutions which are regular and bounded (in fact oscillatory) even at the resonance 
as noted above. 

We would like to point out that the objective of the present paper is extremely 
modest. In all the literature, while discussing the quantum theory of dispersion in the 
absence of resonance, one first obtains the expectation values of the polarization from 
which the refractive index is calculated in a straightforward manner. But as soon as 
one considers the presence of resonance one introduces immediately, in an ad hoc 
manner, a damping factor (as noted in the first paragraph). The object of this paper is 
to show that the refractive index in the presence of resonance can also be obtained 
following exactly the same procedure, which is quite acceptable, as in the absence of 
resonance. Further, the dispersion formula thus obtained possesses all the basic 
characteristic features which are observed, namely, positive and negative dispersions, 
as well as anomalous dispersion in the neighbourhood of resonance. The physical 
system which corresponds to our simple model consists of a dilute gas where the mutual 
interaction between the molecules may be neglected. Hence, there is no need to introduce 
any relaxation time. We calculate directly the average electric polarization. The 
refractive index is obtained from the induced polarization. The introduction of the 
damping factor in the wavefunctions leads to serious difficulty, as the expectation values 
of any operator calculated from them should also be decaying with time, which is 
contrary to the observed facts. 

In the next section, the perturbation expansion is obtained for the general case 
as well as that of resonance. In the case of resonance it is shown that the wave equation 
does not have solutions of the form usually assumed, namely to each solution of the 
perturbed equation there corresponds a unique unperturbed stationary state. In fact, 
in this case, the starting unperturbed solution does not correspond to a single stationary 
state, but to a suitable linear combination of all the unperturbed stationary states which 
are in resonance (equation (10)). Since one has to find the expectation values of the 
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electric polarization under the action of the radiation field, one is obliged to obtain 
them with respect to these characteristic perturbed states. Furthermore, only with 
these states is the polarization periodic, with the same period as the radiation field. 
In 6 3 we have calculated the polarization in the sample case, when only two states are 
in resonance. With these two states are associated two characteristic states. The 
dispersion formulae obtained are regular at the resonance and are free from divergence. 
The dispersion with one of the characteristic states is positive while with the other it is 
negative. 0 4 contains a short discussion of the energy density and the energy velocity. 
Finally, we would like to mention that the dispersion formula near resonance presented 
in this paper does not contain any new parameter, but is expressed in terms of the 
dimensionless fine structure constant. 

2. The wavefunction in the presence of radiation 

Let the incident radiation be described by the vector potential 

Since, we are interested in wavelengths large in comparison to the atomic dimensions, 
we can neglect the variation of phase in space and write simply 

a = jao cos ot (1’) 

so that the Schrodinger equation is 

where H ,  is the unperturbed Hamiltonian and 

(3) 

We have introduced the dimensionless parameter 5 ,  which depends on the strength of 
the radiation field. The eigenvalues and the normalized eigenfunctions of the 
unperturbed Hamiltonian are En and &. We assume that the eigenfunctions form a 
complete set. The wave equation with respect to time is a linear homogeneous equation 
with periodic coefficients ; hence, the solutions are of the form 

ea 
me2 * 

H’ = - t c j .  p cos ot +2 

@ t + -  = @(t) (4) ( :I Y(t) = exp(iIt)@(t) 

(Halany 1966), which is a generalization of Floquet’s theorem (Ince 1926). We can 
expand I and @(t) in ascending powers of the perturbation parameter 5.  Thus, solutions 
of equation (2) are of the form 
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where AiN)(t) are periodic, that is 

In the absence of resonance 

E o - 4  f: qp&w+O(Sc) ( 7 )  

for any a, D. The above expression for $ ( t )  shows that one must start with an unperturbed 
wavefunction corresponding to one and only one of the unperturbed wavefunctions, 
that is 

= expi - i E n t j 4 , ,  (8) 

otherwise the coefficients Aho)(t) will not be periodic. However, in the case of resonance 

1 

E o - E ,  = qpsrAO (9) 

the most general starting unperturbed solution satisfying equations (6) is of the form 

(101 +(o)( t )  = expi -;E,,) 1 Ay)( t )4 ,  

where 
A!o) = exp( - iq.tpt)g;. . ( 1  1 )  

The summation is only over those states satisfying equation (9), the termsg are constants 
and A!;P)(t) are now periodic. Hence, in the case of resonance in general one should not 
start with only one unperturbed state but a linear combination of the states which are 
in resonance. It may be noted here that divergent coefficients in the conventional 
perturbation expansion appear only because this point is overlooked. 

2.1. The perturbed waoefunction in the absence of resonance 

The solutions in this case are the usual ones. They are found to be 

$At )  = exp --E?& 4 n  + s‘ c & A n  (12) 
k 

where 

(retaining only first order terms in 5). $ n  are mutually orthonormal and the transforma- 
tion from +n to $, is unitary. 

2.2. The perturbed wavefunction in the presence of resonance 

In order to avoid unnecessary complications we will take the inequality (7) to be valid 
for all states excluding only two which are in resonance. We designate them as 4a 
and 4p with eigenvalues E ,  and E,. Since our object is to investigate the behaviour of 
the system in the neighbourhood of resonance, we take 

(14) E ,  - E,  = h(w + 4,u) 



On the quantum theory of dispersion at resonance 405 

instead of a trivial equality, which corresponds to p = 0. Our aim is to study the 
dispersion as a functioii of p, whose absolute magnitude is small (tlpl << U). 

It can be easily checked that we can still have solutions of the form given by 
expression (12) for all n excluding n = Q and n = b. To obtain the other two solutions 
we are obliged to start with suitable linear combinations of and q5g as $ ( O ) ( t ) ;  from 
equations (IO) and (11) 

I)(')@) = exp --Eat {geda + exp( - iot)gg+p}. (15) ( t  1 
In order to obtain solutions as given in expressions ( 5 )  and (6), it follows that : 

and 
g i  = -2E:"G, exp(i8,) 

( 16') 
g,i = c ( j  * p)agG * ex~( i8  
G, = (4Ey'2 +c'I(j. ~ ) ~ ~ 1 ' } -  "'. 

Two solutions correspond to the choice of two signs. With this choice of zeroth order 
solution one can find successively higher order terms, thus 

$,(t) = exp - - ( E , + t E T ) ) t  ( i  

+t  E' dn{Fng: +Fnggi exp(--iwt)gi) . (17) 1 
The constants If are to be determined from higher order terms, they are 

where 

The prime on the summation sign means Q, 1 terms are to be excluded. I)* are 
normalized; they are mutually orthogonal and orthogonal to $,(n # a, p). Since we 
are interested only in the linear response, we have retained terms up to first order in 5 .  
The higher order terms, on the one hand, lead to terms which oscillate with harmonics 
of the fundamental and on the other hand, they introduce a small correction to the 
terms with the fundamental frequency. The latter does not change the qualitative 
nature of the problem. 
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2.3. The completeness of the solutions and initial value problem 

The solutions I)?, I),,(n # U, p) obtained above are linear combinations of the 
unperturbed solutions with coefficients depending on time. It can be easily checked 
that the transformation which induces the change from +n to I), is unitary as the 
Hamiltonian is hermitian. Hence {I),,} also form a complete set as they are obtained 
by a unitary transformation from a complete set ($,,}. It follows that the most general 
solution of equation (3) is a linear combination of I)*, I),(n # 2, p). So that one can 
easily find the solution which evolves out of any arbitrary initial state in the usual 
manner. 

3. Dispersion 

3.1. The  characteristic states 

The solutions obtained in the previous section are the most important ones from the 
point of physical significance. They correspond to the steady state solutions of time 
independent Hamiltonians. This is because of the fact that, for any operator p which 
does not contain time explicity the expectation value of Q with respect to any state 
as obtained above, that is, (I),,QI),,) for all n, is periodic with the same period as the 
perturbation. No other solutions possess this property and expectation values with 
respect to any other states are not periodic but are highly oscillatory. We will call 
these states the characteristic states since they are characteristic of the periodic 
perturbation. 

3.2. The  dipole moment 

In order to obtain the expectation values of the electric dipole moment we must calculate 
them with respect to these states. The expectation values of the electric dipole moment 
with respect to any state other than I)., will lead us to the usual formula for the 
dispersion, away from resonance. But our interest is only in the neighbourhood of 
resonance. Hence, we consider only 

d ,  = 4I)PI)+). ( 20) 

Since we wish to confine ourselves only to linear response, we consider the terms which 
are linear in 5 and oscillate with the fundamental frequency. They are given by 

d ( ' ) - -  - { e  [ ra, { (g:gi*+g,T*g;)/* exp(-iot) 

where cc is the complex conjugate. The first term of the above expression does not 
contribute, as the average over the phases 6, and 6- vanishes. Next, our object is to 
find the nature of the dispersion in the neighbourhood of resonance E ,  - E ,  = ha,.  
Hence, we must express d'," in terms of p. Since d';) is already linear in {, that is, field 



On the quantum theory of dispersion at resonance 407 

intensity, we can replace o by oo as wo -U = (p. Substituting the values of g and Fnk 
from equations (16), (16') and (13), one obtains 

j. d ,  = P,j. E. 

P+ are given by 

where 

In the above we have used the result 

P k l  = imoklrkl 

which is true for any spherical symmetric potential. It is important to note that there 
is no phase difference between E (electric intensity) and d , .  The oscillator strengths 
fny are (Davydov 1965) 

and the ratio E stands for 

that is, the modulus of the matrix element ( j .  r),fi in units of the Compton wavelength 
h/mc. For isotropic systems, P, in equation (22) is the polarizability scalar and the 
corresponding refractive index n, is given by 

n: = 1 +4nNP, (28) 

where N is the number of atoms per unit volume. Hence n, behaves smoothly in the 
neighbourhood of resonance p = 0. Thus, the ad hoc introduction of unstable decaying 
states is redundant. In the expression for dispersion there are no singular terms with 
vanishing denominator. 

In the neighbourhood of resonance the nature of the dispersion is determined by 
the second term of expression (23). Since 

the nature of the dispersion, that is, whether it is positive or negative, depends relatively 
on the sign of f sa  + 2F- and the states IC/ + or IC/ - , considered in expression (20). If 4= 
and are the ground and the adjacent excited states respectively, ffia+2F- > 0. 
So that, in this case the dispersion in the neighbourhood of resonance is negative, 
that is, it is anomalous for n +  . The dispersion curve in this case is shown in figure 1. 
The central full curve section is obtained from expression (23). Though the right 
hand side of expression (23) is meaningful for all p, our formula is valid only in the 
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neighbourhood of resonance, more precisely (1pl << wo . The dispersion curves on both 
sides away from resonance are obtained from the usual expression for the dispersion 
(Davydov 1965, Born and Wolf 1959). The broken sections of the curve on both sides 
are extrapolated. For w < wo the refractive index increases with w but in the 
neighbourhood of wo it decreases. Hence, it should pass through a maximum and 
similarly it should pass through a minimum in the region w > w o .  These are shown 
by broken lines. Their exact expressions and the position of the maximum and minimum 
can be obtained only with further detailed knowledge of the system. The dispersion 
curve thus agrees in its essential features with the usual dispersion curves obtained 
with damping factors (Sommerfeld 1949, Born and Wolf 1959, Davydov 1965). The 
dispersion which corresponds to n- is normal at  resonance and also on both sides 
further away from it, with two regions of anomalous dispersion between these: they 
should be associated with excited states. 

0 U 0  
U 

Figure 1. The dispersion curve. 

With respect to the expressions (23) and (28) for the polarizability and the refractive 
index, the important point is to note that they are real. On the other hand, corresponding 
expressions obtained from complex energy states (ie decaying states) are complex 
(Sommerfeld 1949, Born and Wolf 1959, Davydov 1965). In our analysis, the imaginary 
terms which correspond to absorption do not appear as the effect of the external periodic 
radiation field is to produce only a periodic polarization of the system. 

Next, the usual expression for the real part of the refractive index in the neighbour- 
hood of resonance retaining the terms which depend on p (Born and Wolf 1959, 
Sommerfeld 1949) is 

where y is the inverse of the halflife of the states, which is introduced ad hoc. While 
from the expression (23) 

As discussed above the nature of variation for both of them for small values of p is 
almost similar; both of them show anomalous behaviour near p = 0. 
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4. The energy density and the energy velocity 

In this section we wish to examine the relation between the energy density and the 
energy velocity, that is, the velocity with which energy is transported through the 
medium. From Maxwell’s equations one can write 

where S is Poynting’s vector. Following the usual method of averaging over a cycle of 
variation of the field quantities (Landau and Lifschitz 1960), the integrand of the volume 
integral may be expressed as the time derivative of the energy density W, averaged over 
a cycle of variation, so that 

This is obtained with the help of expressions (23) and (28) for the polarization and the 
refractive index. The corresponding average of the Poynting vector = jcnwai/8.n. 
So that the energy velocity is given by (Loudon 1970) 

From the expressions (23) and (28) it follows that the magnitude of the energy velocity 
luEl does not tend to zero at resonance (p  = 0). But from the above IuEl is equal to the 
group velocity ; hence, at resonance the magnitudes of the energy velocity and group 
velocity are also equal (Pelzer 1951). 

5. Discussion 

It is quite clear from the previous sections that one can obtain dispersion formulae 
which are regular at resonance without ad hoc introduction of the complex energy eigen- 
values. We have obtained the expectation value of the dipole moment in the presence of 
radiation with respect to the characteristic states which correspond to steady states in 
the presence of radiation. The only point to be emphasized is that the zeroth orders of 
these states, that is +$‘I, are not pure unperturbed eigenstates when there is resonance. 
Further, in calculating the expectation value of r, we have followed the usual procedure 
in quantum mechanics that it is the diagonal elements between the states which are 
characteristic of the given Hamiltonian in the presence of the radiation. It should be 
mentioned that if one forms the expectation values of the dipole moment operator with 
complex energies, that is with decaying states, the dipole moment should also decay with 
time. As noted in the introduction this is extremely undeserving. 

Finally, we do not need any new parameter to get rid of the divergence. From 
relations (30) and (31), it follows that the corresponding dimensionless parameter is 
c. The term Ir,#I can always be expressed, in units of the Bohr radius, as 

h2R 
Ir I = -  ’’ e2m (35) 
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where R is a number depending on the quantum numbers of the two states and from 
equation (27) 

h C  

e2 
c = -R. (36) 

Thus the parameter E is the inverse of the fine structure constant. It is of interest to note 
that from equation (23) in the trivial case when ra8 = 0, the dispersion is regular and 
constant in the neighbourhood of resonance. 
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